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ABSTRACT 

In areas that are unsafe for humans to 

directly study, robotic exploration is an 

excellent method for collecting and 

interpreting data.  Robots can be used for 

exploration; but, they require operator input 

about what tasks to accomplish. In order for 

operators to plan out optimal tasking, 

information about the state of the rover is 

required. Panoramic imaging of the rover’s 

last position useful information; however, 

each panorama is made up of over a hundred 

high resolution images, and sending this 

information is hard due to bandwidth limits. 

In this paper, we explore a way to 

effectively decrease the size of panoramas 

without losing important information.   

 

1.  INTRODUCTION 

 

In an area which is unsafe for humans to 

directly study, such as the Chernobyl 

nuclear reactors, the World Trade Center 

towers, and the surface of Mars, robotic 

exploration is an excellent method for 

collecting and studying data about that area 

[1]. The visual system of a robot provides 

operators with information about the 

environment for safe navigation, determine 

its location, and detect sites of interest. In 

addition, the mission goals and the behavior 

of the operator are also other factors that 

improve information acquisition.  

 

In geological survey missions that are 

carried out by autonomous rovers, 

determining location of the rover is one of 

the top priorities [1]. One of the ways 

location is determined is via study of 

panoramas. Panoramas are images that are 

made by stitching high resolution images 

together.  For the case of geological surveys, 

these panoramas tend to be made up of more 

than a hundred high resolution images, 

which make it difficult to analyze everything 

in the scene and/or transmit the whole data 

to the operators.  

 

To solve this issue, we would like to first 

come up with a matrix of what we consider 

an important feature in the image. Once we 

have criteria set for what an important image 

feature is, we would need to determine 

relative importance of different image 

features. Next we would assign different 

resolution values based on relative 

importance. This results in an image with 

lower file size and a distributed resolution 

map (saliency map) that has high resolution 

in areas where important features exist, low 

resolution where there are no important 

features.  

 

In this paper we use deep auto-encoders and 

TextureCam random forest classifier, 

compress images by over 90% and generate 

saliency map.  

 

2. RELATED WORK 

 

In 2008, Glasgow et al published an 

information optimization model that 

minimizes bandwidth needs while 
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maintaining information quality [1]. This 

model was based on two-year case study of 

an astrobiology field test.   

 

The proposed model by Glasgow et al 

started by identifying targets; targets are 

areas which are of interest. Once targets 

were identified, they were classified into a 

smaller group of classes based of probability 

of detection. The main reason for this was 

that the number of targets per mission could 

be very huge and optimizing the problem for 

each target would be a very difficult [1].     

 

Once the classification was done, the next 

step was to assign values for each class, Ak. 

The assignment of values was based on 

scientists’ behavior while completing the 

specified mission. Once each target class has 

an assigned value, the next step was to 

compute the probability of detecting each 

target class in different regions. These 

regions under consideration were classified 

based on the robot’s camera elevation 

angles. Finally, an information rate was 

computed using (2), which is found by 

taking the derivative of (1). 
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Where V(Ak) is the value assigned to each 

target class as shown in Table 1, rj is each 

region classified based on the robot’s 

camera elevation (Table 2), and B(rj) is the 

number of bits used to acquire a data in 

region rj.  

 

 

 

 

TABLE 1: List of Target classes and their 

approximated values based on observations 

during the LITA filed tests. 

Target Class (Ak) Value (0-1) 

0 Sun 1 

1 Clouds 0.8 

2 Local Topographic Highs 

(i.e. mountain hills) 

0.9 

3 Slopes/Drop-offs 

(Difficult to traverse regions) 

0.5 

4 Drainages/Channels 0.75 

5 Rocks > 1m 0.3 

6 Rocks < 1m 0.3 

7 Sediment 0.3 

 

TABLE 2: List of regions and their 

associated camera elevation angles [1] 

Region (rj) Elevation 

0 -90 

1 -76 

2 -62 

3 -48 

4 -34 

5 -20 

6 -6 

7 8 

8 22 

 

 

3. BACKGROUND  

 

3.1 Machine learning techniques for data 

classification and regression 

 

There are several different approaches to 

effectively analyze and classify data. 

However, depending on the type of data, the 

amount of data, and the different conditional 

constraints one method might be found more 

efficient and/or suitable than other.  

 

In this paper we are used a random forest 

classifier [2] and Hinton et al auto-encoder
 

[3] for region classification and feature 

detection.  
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In the next few subsections I would like to 

introduce some machine learning methods 

so that the reader would have an 

understanding of the later sections.  

 

3.1.1 Naïve Bayes Classifier 

 

The Naïve Bayes algorithm is based on 

conditional probabilities by applying the 

Bayes’ theorem (given by equation 4). 

 

 (   )  
 (   )

 ( )
  ( )                           (4) 

 

The Bayes’ theorem calculates a probability 

of an event occurring given a probability of 

a prior event. This model is naïve because it 

assumes the attributes are conditionally 

independent [5]. Since the denominator does 

not depend on Y, we usually are only 

interested in the numerator. Doing some 

mathematical manipulation on equation 4 

results in the following relationship 

 
 (           )   ( )  ∏  (    )

 
               (5) 

 

For the purpose of classification, we apply a 

decision rule based on (5). One of the most 

common rules used for classification in 

Naïve Bayesian method is called the 

maximum a posteriori (MAP) decision rule. 

The MAP decision rule takes the most 

probable hypothesis as the classification. 

Mathematically this can be expressed as: 
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3.1.2 Artificial Neural Network 

 

Artificial Neural networks are computational 

network models that function in similar 

ways as natural neural networks.  Natural 

neurons take in information through 

synapses and emit a signal through an axon 

to another neuron (see Figure 2).  The 

transmission of the signal occurs only if the 

received signal is greater than the threshold 

for the activation of the neuron.  

 

 
Figure 1 - Natural neurons (artist's 

conception) [4]. 

 

The first artificial neural model was 

introduced by McCulloch and Pitts (1943) 

[4].  Since then there have been several 

improvements to make it more 

robust.  Figure 3 shows general schematics 

of how an artificial neural network (ANN) is 

set up.  Figure 4 shows the same setup with 

a single neuron in the hidden layer.  Each 

connection between the layer nodes is 

weighted.  The weights can be positive or 

negative.  A negative weight implies that the 

signal is inhibited whereas a positive weight 

implies the signal is amplified [4]. 

 

Figure 2 - ANN with two hidden layers [6].  
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Figure 3 - An artificial neuron [6]. 

 

3.1.3 Decision tree learning 

 

Decision tree learning is the simplest form 

of inductive learning algorithm. In decision 

tree learning, several inputs which are 

described by a set of attributes are given to 

the algorithm. The algorithm then performs 

a sequence of tests on the inputs and predicts 

an output for the given input [5]. The way 

decision tree works is very similar to how 

humans make decision in day to day basis.  

 

In the decision tree algorithm, the examples, 

attributes and default values are given as a 

matrix input. Before running any recursion 

learning, a decision tree algorithm checks if 

all the default outputs are the same. If that is 

the case, then no matter what the value of 

each attribute is the output is going to be 

that output. If all the inputs are empty, the 

algorithm returns the default value. If the 

above two cases are not met then the 

algorithm runs recursively to determine 

what is the best attribute. The best attribute 

is defined as the attribute that gives the most 

information gain to the decision making. In 

other word, we want to choose an attribute 

that would minimize the steps taken to reach 

to a decision [5].   Mathematically this is 

given by (1).  

 

IG(Y|X)  =  H(Y) – H(Y|X)      (1) 

 

Where IG – Information Gain 

H(Y) – the entropy of Y (equation 2) 

H(Y|X)  - the entropy of Y given X 

(equation 3) 

 

 ( )   ∑       
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     (3) 

 

Where P is the probability,    is the 

individual attributes, and H(Y|X=  ) is the 

conditional entropy of Y given a specific 

value of X.  

 

Decision tree algorithm can deal with both 

discrete and continuous inputs and outputs. 

The learning process for discrete input and 

discrete output is called classification and 

for continuous case it is called regression 

[5]. 

3.1.4 TextureCam 

In this paper we used a random forest, 

variation of Decision Tree method, based 

classification code, TextureCam.  

 

TextureCam has been trained and tested on 

panoramic images from mars exploration 

rover (MER) for robustness. D. Thompson 

et al. published the Receiver Operating 

Characteristic (ROC) curve shown in Figure 

3. 

 

 
Figure 6: Performance ROC for the Legacy 

panorama. The classifier was trained on the 

Mission Success panorama. Both datasets 

consist of 23 images. [2] 
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3.1.5 Support Vector Machine 

 

Support vector Machine is an algorithm that 

is based on Vapnik-Chervonenkis theory. 

SVM has a strong theoretical foundation [9]. 

SVM is a kernel-based algorithm (i.e. SVM 

takes an input that needs to be classified, 

and by applying a kernel function, it 

transforms the input into a higher dimension 

so that the problem is solvable). Just like all 

the aforementioned algorithms, Support 

Vector Machine can also do both 

classification and regression. It can also 

handle binary or multiclass targets [10]. 

 

3.2 Feature detection and extraction 

 

In the past few decades several new methods 

have been used in computer vision 

applications. Most of these methods are 

variations of supervised learning that 

requires labeled data. For this paper we used 

an unsupervised learning method called 

deep auto-encoder [3]. A deep auto-encoder 

is made up for stacks of Restricted 

Boltzmann Machine (RBM) layers for 

pretraining, any it learns nonlinear principal 

component analysis (PCA). Pretraining is 

essential because for relatively large 

networks, backpropagation gives much 

worse results if no pretraining is used [11].  

 

3.2.1 Restricted Boltzmann 

Machine (RBM) 

 

A restricted Boltzmann machine is a 

stochastic neural network system with a 

visible and a hidden layer [7]. Each neuron 

on the visible layer will be weighted and 

pass through some function (usually a 

sigmoid) to create the neurons on the hidden 

layer. Figure 1 shows a simple setup of a 

restricted Boltzmann machine. Where red 

represents the visible layer and blue 

represents the hidden layer.  Each circle is 

called a neuron.  

 
 

 

Figure 1: Restricted Boltzmann Machine 

[7] 

 

 

3.2.2 Deep Belief Auto-Encoder  

 

Deep Auto-Encoder [8] is also a form of 

an artificial neural network that tries to 

perform dimensional reduction via 

nonlinear PCA method. The input and 

the output of an auto-encoder have the 

same meaning, whereas the middle layer 

is composed of lower number of 

neurons. This method is a  unsupervised 

learning where it reduces the number of 

neurons form layer to layer until it 

reaches a specified middle layer then 

tries to reconstruct the input image from 

the neurons in the middle layer (“code 

layer” in Figure 2). Figure 2 describes 

this process briefly.  
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Figure 2: Pre-training consists of learning a stack 

of restricted Boltzmann machines (RBMs), each 

having only one layer of feature detectors. The 

learned feature activations of one RBM are used 

as the “data” for training the next RBM in the 

stack. After the pre-training, the RBMs are 

“unrolled” to create a deep auto-encoder, which 

is then fine-tuned using backpropagation of error 

derivatives [8] 

 

3.3 Classifier Performance 

 

Classifier’s performance is measured by 

taking the ratio of correctly classified 

datasets to datasets trained or tested.  An 

accuracy percentage can also be calculated 

from a confusion matrix by summing the 

diagonal values and dividing it by the 

number of cases. A confusion matrix is a 

table that visually shows a performance of 

an algorithm. Table 3 shows an example of 

such a table.  

 

 

 

 

Table 2: Confusion Matrix 

 Predicted 

class 

Rainy Sunny Windy 

 

Actual 

class 

Rainy 5 3 0 

Sunny 2 3 1 

windy 0 2 11 

 

 

 

4 METHOD 

 

The approach taken in this paper combines 

local and global classification, and feature 

detection. Here global refers to classification 

done on each panorama, whereas local 

classification and feature detection is done 

on each image (each image, which make up 

a panorama, will be referred as an “Image 

Patch” from here on out). 

 

4.1 Data Acquisition  

 

The data for this project was acquired from 

Carnegie Mellon Field Robotics center’s 

LITA group. These data were collected 

during the two year geological survey, 

between 2003-05, in the Atacama Desert, 

Chile. Figure 3 below shows a typical 

panorama looks like. 

 

 

 
Figure 3: Panoramic image at 3% resolution 
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4.2 Local Classification and Feature 

Detection 

A. Preprocessing 

 

An auto-encoder network requires input 

images as row vectors where each pixel is 

treated as a single unit in the visual layer. 

Since each patch is high resolution (1280 by 

920 px) generating a training and/or testing 

data would result in a huge matrix. 

Therefore, for each global class (see section 

4.3), we converted each patch into a 32 by 

32 grayscale image and rotated from -90 deg 

to 90 deg and scaled it from 0.4
 
to 1 creating 

about 427 images per patch. This results in 

an average of 8000 images per class. 

 

B. Pre-training and Fine-tuning 

 

To reduce computational cost, all datasets 

were subdivided into several mini-batches. 

For all datasets, each hidden layer was pre-

trained for 200 passes through the entire 

training set. The weights were initialized 

randomly and were updated after each mini-

batch [12]with a learning rate of 0.001, 

weight cost of 0.0002, initial momentum of 

0.5 and final momentum of 0.9 (see hinton 

code for details 
http://www.cs.toronto.edu/~hinton/MatlabFor
SciencePaper.html) 
 

Once the network goes through several 

layers of RBM, it performs backpropagation 

via gradient decent method to adjust the 

weights.  

    

C. Classification 

 

For each global class (sec 4.3), the nine 

neurons at the code layer would be used to 

train Support Vector Machine (SVM).  

Once training is done, the SVM will be 

given each of the nine neurons of a specific 

global class we are interested in. This 

results in each of the code layer neurons 

being classified into different global 

classes.  

 

D. Local Saliency Map 

 

After the classification is done, we take 

three out of the nine neurons to construct a 

mask. The mask is a binary form of the 

selected neurons.  

 

4.3 Global Classification 

 

The global classification is done at a full 

panorama level. Each panorama would be 

color labeled following Glasgow’s relative 

value matrix (Table 1). Table 3 shows the 

color label for each class. 

 

Once few panoramas have been trained 

using TextureCam [2], then any new/unseen 

panorama could be classified with high 

accuracy. Figure 4 and Figure 5 show a 

typical label panorama and a TextureCam 

classification panorama respectively.  

 

 
Figure 4: Label data for the panorama in Figure 3 

 

http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
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Figure 5: TextureCam classification for Figure 3 and Figure 4  

 

 

Finally, the output label image will be used 

as a global saliency map for resolution 

adjustment (section 4.4).  

 

Table 3: Global Classification Color Code 

Class name Class 

color 

Class 

label 

Black patches (artifact 

of Gigapan stitcher) 

Black 0 

Multiple classes in 

same patch 

White 1 

Rover parts Red 2 

Sky Green 3 

Rocks & Sediment Blue 4 

Slops & drop-offs Yellow 5 

Drainage/Channels Brown 6 

Clouds Orange 7 

Mountains Purple 8 

Sun Spring 

Green 

9 

 

4.4 Resolution adjustment 

 

The resolution adjustment begins with 

reducing the whole panorama to 50% 

resolution.  

 

Next, based on the global classification, 

each class will be assigned different 

resolutions ranging from 6% to 50% based 

on its relative importance (Table 1).  

 

Even though the resolution adjustment based 

on global classification does a good job 

reducing file size, it fails to discriminate 

possible informative features within class. 

Therefore, further resolution adjustment will 

be done on each patch for classes with high 

resolutions.  

 

This is achieved by taking each mask, and 

using them to select only portions of the data 

from a Laplacian image while performing 

Gaussian pyramid expansion. 

   

4.5 Stitching 

 

The last stage of this process is to stitch the 

resolution adjusted image patches back 

together. Since the raw images from the 

rover have overlapping regions, we used a 

commercial stitching brand, GigaPan, for 

stitching each panorama. After the initial 

stitching, each panorama was broken into 

smaller patches in order to perform local and 

global classification.  

 

5  RESULTS 

 

5.1 TextureCam Performance 

 

TextureCam was trained and tested on three 

panoramas. Each patch was given a single 

label based on Table 3. In cases where a 

patch contained one of the classes and part 

of the rover’s body, it was given a label 1. 

Table 4 and Table 5 below show the 

confusion matrix, and the training squared 

error, and testing squared error.  
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Table 4: Summary of TextureCam Training 

performance on Panoramic Images 

Confusion Matrix Accuracy 

8 0 1 0  

 

88.09 
0 21 0 0 

1 0 26 8 

0 0 0 19 

 

Table 5: Summary of TextureCam Test 

performance on Panoramic Images 

Confusion Matrix Accuracy 

2 0 3 0 0  

 

82.54% 
0 19 0 0 0 

0 0 16 0 0 

0 0 7 14 0 

0 0 0 1 1 

 

5.1 Deep Auto-Encoder Performance 

 

The deep auto-encoder was used to generate 

features for SVM. The robustness the auto-

encoder was measured by its reconstruction 

error. The following is a summary of testing 

and training reconstruction squared errors 

for the network. Each data class had 8967 

individual images of which 7000 were used 

for training and the rest was used for testing.    

 

Table 6: Summary of Deep Auto-Encoder 

Network 

Data class Train Squared 

Error 

Test Squared 

Error 

Class 3 0.553 1.552 

Class 8 2.113 3.950 

Class 4 2.017 3.136 

Class 2 & 

class 4 

2.0972 11.705 

Class 0 0 0 

Class 0 0 0 

 

5.2 SVM Performance 

 

 The datasets used for SVM were 63, 32 by 

32 images, which were taken from 2 

panoramas. The training and testing 

accuracies were 78% and 34% respectively.  

 

5.3 Image File Size Reduction 

 

Table 7: Panorama image file size for 

different levels of image compression 

Type File size 

(JPEG)-MB 

Original 32 

Gray, full resolution 8.5 

Gray half resolution 3.03 

Gray half  resolution with 

global saliency map 

1.8 

Gray half res with local 

and global saliency map 

< 1* 

*work in progress 

 

6 DISCUSSION 

 

The main goal of this paper was to reduce 

panoramic image’s file size, and create local 

and global saliency maps. This was achieved 

by generating a global saliency map via 

TextureCam, and local saliency map through 

a combination of SVM and deep auto-

encoders. 

  

The previous section shows promising 

results in different aspects. As shown in 

Figure 5 and Table 5 TextureCam does a 

good job classifying the panorama with 82% 

of accuracy. Even though the label image 

(Figure 4) had grids that have two classes, 

TextureCam was able to correctly classify 

those classes. For example, the ground 

between the left and right solar panels of the 

rover was classified as just solar panel due 

to the way labeling was done. However, 

texture cam was able to differentiate 

between the solar panel and the ground in 

those regions very well. On the other hand, 

there are several pixels on the panorama, 

especially on the ground consisting of only 

small rocks, where the classifier seems to 

have less accuracy.  
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Deep auto-encoder algorithm used in this 

paper has been used for face recognition 

task with 165000 images and hand written 

digit recognition task with 60000 images 

[3]. However, it has not been on panoramas. 

In this paper, we used close to 54000 

individual images taken from one panorama. 

The highest test square error was observed 

for data class 4. Data class 4 is a class of 

image patches containing small (<1m) 

rocks, which has the least relative 

importance (Table 1). Therefore, the 

reconstruction error is acceptable.  

 

There was perfect reconstruction for data 

class 5 and 6. These two classes consisted of 

image patches with uniform color no 

texture. Even though, these patches are not 

off interest, we can still use them as a 

baseline test for the algorithm.  

 

In the regions we are most interested in, (i.e. 

data class 2 and 3), we have reconstruction 

squared error less than 4. Having low 

reconstruction error implies that the code 

layer features are the most important 

features required for the reconstruction of 

the dataset.  

 

Local salience mapping has not been 

completed, due to the high error rate in the 

SVM classifier. Only 54 images taken from 

one panorama were used for training the 

SVM. This is not an optimal way of training 

the SVM because not all panoramas contain 

all classes. We are currently working on 

including images from several panoramas 

covering all different classes in order to 

increase the SVM accuracy. 

 

Image reduction was one of the two goals of 

this project. As shown in Table 7, applying 

global saliency helped reduce the size of the 

panorama to less than 2 MB. Work in 

progress shows that applying local saliency 

would help reduce panoramic image’s file 

size to sub-megabyte.  

 

In summary, we were able to reduce 

panoramic image’s file size by than 90%, 

and apply local and global saliency maps to 

help as visual cues.  
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