
1

Intelligent Image Compression and Feature Extraction

Salem Cherenet

Advisor: David Wettergreen

Co-Adviser: Tai Sing Lee

ABSTRACT

In areas that are unsafe for humans to

directly study, robotic exploration is an

excellent method for collecting and

interpreting data. Robots can be used for

exploration; but, they require operator input

about what tasks to accomplish. In order for

operators to plan out optimal tasking,

information about the state of the rover is

required. Panoramic imaging of the rover’s

last position useful information; however,

each panorama is made up of over a hundred

high resolution images, and sending this

information is hard due to bandwidth limits.

In this paper, we explore a way to

effectively decrease the size of panoramas

without losing important information.

1. INTRODUCTION

In an area which is unsafe for humans to

directly study, such as the Chernobyl

nuclear reactors, the World Trade Center

towers, and the surface of Mars, robotic

exploration is an excellent method for

collecting and studying data about that area

[1]. The visual system of a robot provides

operators with information about the

environment for safe navigation, determine

its location, and detect sites of interest. In

addition, the mission goals and the behavior

of the operator are also other factors that

improve information acquisition.

In geological survey missions that are

carried out by autonomous rovers,

determining location of the rover is one of

the top priorities [1]. One of the ways

location is determined is via study of

panoramas. Panoramas are images that are

made by stitching high resolution images

together. For the case of geological surveys,

these panoramas tend to be made up of more

than a hundred high resolution images,

which make it difficult to analyze everything

in the scene and/or transmit the whole data

to the operators.

To solve this issue, we would like to first

come up with a matrix of what we consider

an important feature in the image. Once we

have criteria set for what an important image

feature is, we would need to determine

relative importance of different image

features. Next we would assign different

resolution values based on relative

importance. This results in an image with

lower file size and a distributed resolution

map (saliency map) that has high resolution

in areas where important features exist, low

resolution where there are no important

features.

In this paper we use deep auto-encoders and

TextureCam random forest classifier,

compress images by over 90% and generate

saliency map.

2. RELATED WORK

In 2008, Glasgow et al published an

information optimization model that

minimizes bandwidth needs while

2

maintaining information quality [1]. This

model was based on two-year case study of

an astrobiology field test.

The proposed model by Glasgow et al

started by identifying targets; targets are

areas which are of interest. Once targets

were identified, they were classified into a

smaller group of classes based of probability

of detection. The main reason for this was

that the number of targets per mission could

be very huge and optimizing the problem for

each target would be a very difficult [1].

Once the classification was done, the next

step was to assign values for each class, Ak.

The assignment of values was based on

scientists’ behavior while completing the

specified mission. Once each target class has

an assigned value, the next step was to

compute the probability of detecting each

target class in different regions. These

regions under consideration were classified

based on the robot’s camera elevation

angles. Finally, an information rate was

computed using (2), which is found by

taking the derivative of (1).

∑ ∑ () (

 ())

∑ ()

 (1)

 ̇

∑ ∑ () (

 ())

∑ ()

 (2)

Where V(Ak) is the value assigned to each

target class as shown in Table 1, rj is each

region classified based on the robot’s

camera elevation (Table 2), and B(rj) is the

number of bits used to acquire a data in

region rj.

TABLE 1: List of Target classes and their

approximated values based on observations

during the LITA filed tests.

Target Class (Ak) Value (0-1)

0 Sun 1

1 Clouds 0.8

2 Local Topographic Highs

(i.e. mountain hills)

0.9

3 Slopes/Drop-offs

(Difficult to traverse regions)

0.5

4 Drainages/Channels 0.75

5 Rocks > 1m 0.3

6 Rocks < 1m 0.3

7 Sediment 0.3

TABLE 2: List of regions and their

associated camera elevation angles [1]

Region (rj) Elevation

0 -90

1 -76

2 -62

3 -48

4 -34

5 -20

6 -6

7 8

8 22

3. BACKGROUND

3.1 Machine learning techniques for data

classification and regression

There are several different approaches to

effectively analyze and classify data.

However, depending on the type of data, the

amount of data, and the different conditional

constraints one method might be found more

efficient and/or suitable than other.

In this paper we are used a random forest

classifier [2] and Hinton et al auto-encoder

[3] for region classification and feature

detection.

3

In the next few subsections I would like to

introduce some machine learning methods

so that the reader would have an

understanding of the later sections.

3.1.1 Naïve Bayes Classifier

The Naïve Bayes algorithm is based on

conditional probabilities by applying the

Bayes’ theorem (given by equation 4).

 ()
 ()

 ()
 () (4)

The Bayes’ theorem calculates a probability

of an event occurring given a probability of

a prior event. This model is naïve because it

assumes the attributes are conditionally

independent [5]. Since the denominator does

not depend on Y, we usually are only

interested in the numerator. Doing some

mathematical manipulation on equation 4

results in the following relationship

 () () ∏ ()

 (5)

For the purpose of classification, we apply a

decision rule based on (5). One of the most

common rules used for classification in

Naïve Bayesian method is called the

maximum a posteriori (MAP) decision rule.

The MAP decision rule takes the most

probable hypothesis as the classification.

Mathematically this can be expressed as:

 ()

 () ∏ ()

 (6)

3.1.2 Artificial Neural Network

Artificial Neural networks are computational

network models that function in similar

ways as natural neural networks. Natural

neurons take in information through

synapses and emit a signal through an axon

to another neuron (see Figure 2). The

transmission of the signal occurs only if the

received signal is greater than the threshold

for the activation of the neuron.

Figure 1 - Natural neurons (artist's

conception) [4].

The first artificial neural model was

introduced by McCulloch and Pitts (1943)

[4]. Since then there have been several

improvements to make it more

robust. Figure 3 shows general schematics

of how an artificial neural network (ANN) is

set up. Figure 4 shows the same setup with

a single neuron in the hidden layer. Each

connection between the layer nodes is

weighted. The weights can be positive or

negative. A negative weight implies that the

signal is inhibited whereas a positive weight

implies the signal is amplified [4].

Figure 2 - ANN with two hidden layers [6].

4

Figure 3 - An artificial neuron [6].

3.1.3 Decision tree learning

Decision tree learning is the simplest form

of inductive learning algorithm. In decision

tree learning, several inputs which are

described by a set of attributes are given to

the algorithm. The algorithm then performs

a sequence of tests on the inputs and predicts

an output for the given input [5]. The way

decision tree works is very similar to how

humans make decision in day to day basis.

In the decision tree algorithm, the examples,

attributes and default values are given as a

matrix input. Before running any recursion

learning, a decision tree algorithm checks if

all the default outputs are the same. If that is

the case, then no matter what the value of

each attribute is the output is going to be

that output. If all the inputs are empty, the

algorithm returns the default value. If the

above two cases are not met then the

algorithm runs recursively to determine

what is the best attribute. The best attribute

is defined as the attribute that gives the most

information gain to the decision making. In

other word, we want to choose an attribute

that would minimize the steps taken to reach

to a decision [5]. Mathematically this is

given by (1).

IG(Y|X) = H(Y) – H(Y|X) (1)

Where IG – Information Gain

H(Y) – the entropy of Y (equation 2)

H(Y|X) - the entropy of Y given X

(equation 3)

 () ∑

 (2)

 () ∑ () ()

 (3)

Where P is the probability, is the

individual attributes, and H(Y|X=) is the

conditional entropy of Y given a specific

value of X.

Decision tree algorithm can deal with both

discrete and continuous inputs and outputs.

The learning process for discrete input and

discrete output is called classification and

for continuous case it is called regression

[5].

3.1.4 TextureCam

In this paper we used a random forest,

variation of Decision Tree method, based

classification code, TextureCam.

TextureCam has been trained and tested on

panoramic images from mars exploration

rover (MER) for robustness. D. Thompson

et al. published the Receiver Operating

Characteristic (ROC) curve shown in Figure

3.

Figure 6: Performance ROC for the Legacy

panorama. The classifier was trained on the

Mission Success panorama. Both datasets

consist of 23 images. [2]

5

3.1.5 Support Vector Machine

Support vector Machine is an algorithm that

is based on Vapnik-Chervonenkis theory.

SVM has a strong theoretical foundation [9].

SVM is a kernel-based algorithm (i.e. SVM

takes an input that needs to be classified,

and by applying a kernel function, it

transforms the input into a higher dimension

so that the problem is solvable). Just like all

the aforementioned algorithms, Support

Vector Machine can also do both

classification and regression. It can also

handle binary or multiclass targets [10].

3.2 Feature detection and extraction

In the past few decades several new methods

have been used in computer vision

applications. Most of these methods are

variations of supervised learning that

requires labeled data. For this paper we used

an unsupervised learning method called

deep auto-encoder [3]. A deep auto-encoder

is made up for stacks of Restricted

Boltzmann Machine (RBM) layers for

pretraining, any it learns nonlinear principal

component analysis (PCA). Pretraining is

essential because for relatively large

networks, backpropagation gives much

worse results if no pretraining is used [11].

3.2.1 Restricted Boltzmann

Machine (RBM)

A restricted Boltzmann machine is a

stochastic neural network system with a

visible and a hidden layer [7]. Each neuron

on the visible layer will be weighted and

pass through some function (usually a

sigmoid) to create the neurons on the hidden

layer. Figure 1 shows a simple setup of a

restricted Boltzmann machine. Where red

represents the visible layer and blue

represents the hidden layer. Each circle is

called a neuron.

Figure 1: Restricted Boltzmann Machine

[7]

3.2.2 Deep Belief Auto-Encoder

Deep Auto-Encoder [8] is also a form of

an artificial neural network that tries to

perform dimensional reduction via

nonlinear PCA method. The input and

the output of an auto-encoder have the

same meaning, whereas the middle layer

is composed of lower number of

neurons. This method is a unsupervised

learning where it reduces the number of

neurons form layer to layer until it

reaches a specified middle layer then

tries to reconstruct the input image from

the neurons in the middle layer (“code

layer” in Figure 2). Figure 2 describes

this process briefly.

6

Figure 2: Pre-training consists of learning a stack

of restricted Boltzmann machines (RBMs), each

having only one layer of feature detectors. The

learned feature activations of one RBM are used

as the “data” for training the next RBM in the

stack. After the pre-training, the RBMs are

“unrolled” to create a deep auto-encoder, which

is then fine-tuned using backpropagation of error

derivatives [8]

3.3 Classifier Performance

Classifier’s performance is measured by

taking the ratio of correctly classified

datasets to datasets trained or tested. An

accuracy percentage can also be calculated

from a confusion matrix by summing the

diagonal values and dividing it by the

number of cases. A confusion matrix is a

table that visually shows a performance of

an algorithm. Table 3 shows an example of

such a table.

Table 2: Confusion Matrix

 Predicted

class

Rainy Sunny Windy

Actual

class

Rainy 5 3 0

Sunny 2 3 1

windy 0 2 11

4 METHOD

The approach taken in this paper combines

local and global classification, and feature

detection. Here global refers to classification

done on each panorama, whereas local

classification and feature detection is done

on each image (each image, which make up

a panorama, will be referred as an “Image

Patch” from here on out).

4.1 Data Acquisition

The data for this project was acquired from

Carnegie Mellon Field Robotics center’s

LITA group. These data were collected

during the two year geological survey,

between 2003-05, in the Atacama Desert,

Chile. Figure 3 below shows a typical

panorama looks like.

Figure 3: Panoramic image at 3% resolution

7

4.2 Local Classification and Feature

Detection

A. Preprocessing

An auto-encoder network requires input

images as row vectors where each pixel is

treated as a single unit in the visual layer.

Since each patch is high resolution (1280 by

920 px) generating a training and/or testing

data would result in a huge matrix.

Therefore, for each global class (see section

4.3), we converted each patch into a 32 by

32 grayscale image and rotated from -90 deg

to 90 deg and scaled it from 0.4

to 1 creating

about 427 images per patch. This results in

an average of 8000 images per class.

B. Pre-training and Fine-tuning

To reduce computational cost, all datasets

were subdivided into several mini-batches.

For all datasets, each hidden layer was pre-

trained for 200 passes through the entire

training set. The weights were initialized

randomly and were updated after each mini-

batch [12]with a learning rate of 0.001,

weight cost of 0.0002, initial momentum of

0.5 and final momentum of 0.9 (see hinton

code for details
http://www.cs.toronto.edu/~hinton/MatlabFor
SciencePaper.html)

Once the network goes through several

layers of RBM, it performs backpropagation

via gradient decent method to adjust the

weights.

C. Classification

For each global class (sec 4.3), the nine

neurons at the code layer would be used to

train Support Vector Machine (SVM).

Once training is done, the SVM will be

given each of the nine neurons of a specific

global class we are interested in. This

results in each of the code layer neurons

being classified into different global

classes.

D. Local Saliency Map

After the classification is done, we take

three out of the nine neurons to construct a

mask. The mask is a binary form of the

selected neurons.

4.3 Global Classification

The global classification is done at a full

panorama level. Each panorama would be

color labeled following Glasgow’s relative

value matrix (Table 1). Table 3 shows the

color label for each class.

Once few panoramas have been trained

using TextureCam [2], then any new/unseen

panorama could be classified with high

accuracy. Figure 4 and Figure 5 show a

typical label panorama and a TextureCam

classification panorama respectively.

Figure 4: Label data for the panorama in Figure 3

http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

8

Figure 5: TextureCam classification for Figure 3 and Figure 4

Finally, the output label image will be used

as a global saliency map for resolution

adjustment (section 4.4).

Table 3: Global Classification Color Code

Class name Class

color

Class

label

Black patches (artifact

of Gigapan stitcher)

Black 0

Multiple classes in

same patch

White 1

Rover parts Red 2

Sky Green 3

Rocks & Sediment Blue 4

Slops & drop-offs Yellow 5

Drainage/Channels Brown 6

Clouds Orange 7

Mountains Purple 8

Sun Spring

Green

9

4.4 Resolution adjustment

The resolution adjustment begins with

reducing the whole panorama to 50%

resolution.

Next, based on the global classification,

each class will be assigned different

resolutions ranging from 6% to 50% based

on its relative importance (Table 1).

Even though the resolution adjustment based

on global classification does a good job

reducing file size, it fails to discriminate

possible informative features within class.

Therefore, further resolution adjustment will

be done on each patch for classes with high

resolutions.

This is achieved by taking each mask, and

using them to select only portions of the data

from a Laplacian image while performing

Gaussian pyramid expansion.

4.5 Stitching

The last stage of this process is to stitch the

resolution adjusted image patches back

together. Since the raw images from the

rover have overlapping regions, we used a

commercial stitching brand, GigaPan, for

stitching each panorama. After the initial

stitching, each panorama was broken into

smaller patches in order to perform local and

global classification.

5 RESULTS

5.1 TextureCam Performance

TextureCam was trained and tested on three

panoramas. Each patch was given a single

label based on Table 3. In cases where a

patch contained one of the classes and part

of the rover’s body, it was given a label 1.

Table 4 and Table 5 below show the

confusion matrix, and the training squared

error, and testing squared error.

9

Table 4: Summary of TextureCam Training

performance on Panoramic Images

Confusion Matrix Accuracy

8 0 1 0

88.09
0 21 0 0

1 0 26 8

0 0 0 19

Table 5: Summary of TextureCam Test

performance on Panoramic Images

Confusion Matrix Accuracy

2 0 3 0 0

82.54%
0 19 0 0 0

0 0 16 0 0

0 0 7 14 0

0 0 0 1 1

5.1 Deep Auto-Encoder Performance

The deep auto-encoder was used to generate

features for SVM. The robustness the auto-

encoder was measured by its reconstruction

error. The following is a summary of testing

and training reconstruction squared errors

for the network. Each data class had 8967

individual images of which 7000 were used

for training and the rest was used for testing.

Table 6: Summary of Deep Auto-Encoder

Network

Data class Train Squared

Error

Test Squared

Error

Class 3 0.553 1.552

Class 8 2.113 3.950

Class 4 2.017 3.136

Class 2 &

class 4

2.0972 11.705

Class 0 0 0

Class 0 0 0

5.2 SVM Performance

 The datasets used for SVM were 63, 32 by

32 images, which were taken from 2

panoramas. The training and testing

accuracies were 78% and 34% respectively.

5.3 Image File Size Reduction

Table 7: Panorama image file size for

different levels of image compression

Type File size

(JPEG)-MB

Original 32

Gray, full resolution 8.5

Gray half resolution 3.03

Gray half resolution with

global saliency map

1.8

Gray half res with local

and global saliency map

< 1*

*work in progress

6 DISCUSSION

The main goal of this paper was to reduce

panoramic image’s file size, and create local

and global saliency maps. This was achieved

by generating a global saliency map via

TextureCam, and local saliency map through

a combination of SVM and deep auto-

encoders.

The previous section shows promising

results in different aspects. As shown in

Figure 5 and Table 5 TextureCam does a

good job classifying the panorama with 82%

of accuracy. Even though the label image

(Figure 4) had grids that have two classes,

TextureCam was able to correctly classify

those classes. For example, the ground

between the left and right solar panels of the

rover was classified as just solar panel due

to the way labeling was done. However,

texture cam was able to differentiate

between the solar panel and the ground in

those regions very well. On the other hand,

there are several pixels on the panorama,

especially on the ground consisting of only

small rocks, where the classifier seems to

have less accuracy.

10

Deep auto-encoder algorithm used in this

paper has been used for face recognition

task with 165000 images and hand written

digit recognition task with 60000 images

[3]. However, it has not been on panoramas.

In this paper, we used close to 54000

individual images taken from one panorama.

The highest test square error was observed

for data class 4. Data class 4 is a class of

image patches containing small (<1m)

rocks, which has the least relative

importance (Table 1). Therefore, the

reconstruction error is acceptable.

There was perfect reconstruction for data

class 5 and 6. These two classes consisted of

image patches with uniform color no

texture. Even though, these patches are not

off interest, we can still use them as a

baseline test for the algorithm.

In the regions we are most interested in, (i.e.

data class 2 and 3), we have reconstruction

squared error less than 4. Having low

reconstruction error implies that the code

layer features are the most important

features required for the reconstruction of

the dataset.

Local salience mapping has not been

completed, due to the high error rate in the

SVM classifier. Only 54 images taken from

one panorama were used for training the

SVM. This is not an optimal way of training

the SVM because not all panoramas contain

all classes. We are currently working on

including images from several panoramas

covering all different classes in order to

increase the SVM accuracy.

Image reduction was one of the two goals of

this project. As shown in Table 7, applying

global saliency helped reduce the size of the

panorama to less than 2 MB. Work in

progress shows that applying local saliency

would help reduce panoramic image’s file

size to sub-megabyte.

In summary, we were able to reduce

panoramic image’s file size by than 90%,

and apply local and global saliency maps to

help as visual cues.

7 ACKNOWLADGEMENTS

I would like to give special thanks to David

Wettegreen, Tai Sing Lee, Michael Furlong,

and David Thompson for being instrumental

in giving me direction throughout this

project.

I would also like to thank the National

Consortium for Graduate Degrees for

Minorities in Engineering and Science, Inc.

(GEM), SLAC National Accelerator Lab,

and Carnegie Mellon Mechanical

Engineering department for sponsoring my

graduate study.

11

Reference

[1] Glasgow, J., G. Thomas, E. Pudenz, N.

Cabrol, D. Wettergreen, P. Coppin (2008),

“Optimizing Information Value: Improving

Rover Sensor Data Collection, IEEE Trans.

Systems, Man and Cybernetics, Part A: Systems

and Humans, 38(3).

[2] K. L. Wagstaff, D. R. Thompson, et al.,

“Smart Cameras for Remote Science Survey”.

Unpublished manuscript.

[3] Hinton, G. E., Osindero, S. and Teh, Y.

(2006)

A fast learning algorithm for deep belief nets.

Neural Computation, 18, pp 1527-1554.

[4] Bertin, Emanuel. Sextractor 1.0a User's

Guide. Paris: Institut D'Astrophysique De Paris.

Pdf.

[5] Stuart Russell, Peter Norvig Artificial

Intelligence. A Modern Approach, Prentice Hall.

[6] NeuroDimention. "NeuroSolutions: What Is

a Neural Network?" NeuroDimension.

 NeuroDimention,inc, 2011. Web. 03 Apr.

2012.

<http://www.nd.com/welcome/whatisnn.htm>.

[7] "Restricted Boltzmann Machine - Short

Tutorial." IMonad Software RSS. N.p., n.d. Web.

06 Mar. 2013.

[8] Hinton, G. E., Osindero, S. and The, Y.

(2006) A fast learning algorithm for deep belief

nets. Neural Computation, 18, pp 1527-1554.

[9] Gehring, W.J., Coles, M.G.H., Meyer, D.E.,

Donchin, E., 1995. A brain potential

manifestation of

error-related processing. In: Karmos, G.,

Molnar, M., Csepe, V., Czigler, I., Desmedt, J.E.

(Eds.), Perspectives of Event-Related Potentials

Research (EEG Suppl. 44), pp. 261–272.

[10] Oracle. "Support Vector

Machines." Support Vector Machines. Oracle

Data Mining, 2008.Web. 11 Apr. 2012.

<http://docs.oracle.com/cd/B28359_01/datamine

.111/b28129/algo_svm.htm>.

[11] Hinton, G. E. and Salakhutdinov, R. R.

(2006) Reducing the dimensionality of data with

neural networks. Science, Vol. 313. no. 5786,

pp. 504 - 507, 28 July 2006.

